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Abstract

Constant fast-paced technological advancements are a major catalyst for software complexity,

which becomes concerning as software systems spread to all areas of society and become safety-

critical. Formal methods provide tools to mitigate this issue by targeting bugs and faults, however

they require formal specifications for determining the intended behaviour of the system. This is

problematic as specification-making is a time-consuming, laborious, and error-prone process, and

is often avoided unless strictly necessary. This thesis addresses this problem by introducing a

new approach to specification creation based on formal inference of system behaviour alongside

user-based manual adjustments. Active automata learning is used to learn the behaviour of the

target system in the form of deterministic finite automata (DFA) and register automata (RA).

Then through an extension of the automata learning framework C 3AL, the generated specification

can be manually refined through user-provided counterexamples. A proof-of-concept specification

mining tool is also implemented which showcases the ability to generate a specification of the

Java Iterator interface tailored to the user’s preference. This work lays the foundations for a

more reliable and efficient specification creation process that aims to make formal methods more

accessible to real-world systems.
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Chapter 1

Introduction

In a world riddled with extremely complex software systems, there is a major need for easy and

clear descriptions of the behaviour of such systems - these are specifications. A common example of

this is user manuals, which describe how to interact with the system to obtain the desired outcome

and the precautions to have to prevent bad outcomes from happening. These specifications vary

in the level of detail and abstraction to better suit the needs of their target audience. One key

area that requires specifications is formal verification, a tool that provides correctness guarantees

on specific system properties, which is particularly important for safety-critical systems.

Nonetheless, developing specifications requires a full in-depth understanding of the system and

the intricacies of all possible interactions available. Even if such a person exists, they would have

to go through a mostly manual and extremely time-consuming process to develop the specification,

which in the end would still be prone to human error. It is therefore understandable why most

developers and architects steer away from creating detailed system specifications unless necessary.

A question now arises: how to improve the specification-making process. One clear direction is

to reduce the amount of manual work necessary by automating part of the specification inference.

This is an area that has been mainly explored in the last two decades, however the produced

work has several practical limitations, one of them being the inability to ensure that the obtained

specification accurately describes the intent of the system. This mainly comes from the use of

machine learning for the specification mining. As such, formal methods, due to their mathematical

rigour, are a promising method for overcoming this issue.

By making specification creation more automated, the flexibility to alter the generated specifi-

cation becomes more complicated. Since formal methods are based on logical reasoning and as such

require consistency and determinism, contradicting learned behaviour is generally not supported by

the current algorithms. This extension is nonetheless necessary, as providing software-development-

like tools for creating specifications improves the experience of generating system specifications and

makes all tools that require this type of system representation much more accessible.

This project aims to explore state-of-the-art formal methods for specification inference and to

extend them to support the manual tweaking of the resulting specification. It also has the goal

of producing a proof-of-concept tool for specification inference that overcomes the aforementioned

limitations of current tools. The first stage of the project involved a literature review of the evo-

lution of specification mining methods and the most current technology. Then the state-of-the-art

active automata learning methods were applied to an exemplary specification mining instance. The

subsequent stage involved the extension of these state-of-the-art methods to support counterex-

amples that overwrite part of the learned behaviour. Lastly, the user interface was implemented
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to illustrate the possible use of the introduced work in a practical setting.

Outline: Firstly we motivate the problem and proposed solution in depth and list the project

contributions. We then describe the state-of-the-art, explain its current limitations, and further

expand on how this project distinguishes itself from previous work. We follow this by delineating

the preliminary knowledge to provide the necessary background to the project details. Next we

explain the implementation of the proposed solution and the chosen design decisions, finalising

with a running example of the tool built. Finally we provide an overview of the project, highlight

achievements and detail future work.
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Chapter 2

Motivation

Software is expanding to almost every part of society, from entertainment to transportation and

even healthcare. As these software systems are applied more widely and, consequently, become

more complex, it becomes harder to ensure they behave as expected. Real-world systems employ

features that are difficult to formally reason about, and the tools that analyse their correctness

are inherently hard to develop and often under-resourced [Alg+11]. In spite of these difficulties,

ensuring correctness of behaviour is important, particularly when it comes to safety-critical sys-

tems [Kli96]. A key example of this is Therac-25, a radiation machine which contained, among

a variety of issues, bugs that majorly contributed to the fatalities of the patients using it [LT93].

This example has been an important cautionary tale for computer scientists since then, having

brought to light the importance of spending enough resources in verifying critical software and

motivating a lot of the research in the area of verification [Gar05; Tho94; BZK21].

Non-critical systems, on the other hand, do not demand such a restrictive perspective on their

correctness, as their malfunction does not often carry such grave consequences. Nevertheless,

software engineers still seek the most guarantees for the least effort [Lem+17]. The prevalent

industry strategy is to use testing, but even though testing proves that a system behaves as

expected for a finite amount of scenarios, it provides little guarantees on the absence of incorrect

behaviour [Ber07]. The consequence of this is evident in the breakdown of software development

costs, of which debugging accounts for half [Bri+20]. As such, the interest in practical easy-to-use

tools that rapidly and effectively detect bugs has dramatically increased [HP18].

Formal methods have been able to offer various solutions to this problem through techniques

such as automata theory, program semantics, and type systems [MB03]. Their ability to systemat-

ically prove that a given system does not violate specific properties has been successfully applied to

critical systems, such as aerospace operating systems [Mar+07] and hardware chips [NM98]. These

tools require specifications to formally define which behaviours are “right” or “wrong” [Hie+09].

Nonetheless, with the constant pressure in the current software development setting for as much

production in as little time as possible, the time-consuming task of manually generating accurate

representations of systems becomes unfeasible [ABL02]. As such, the problem of how to remove

the barriers to specification creation is posed.

When developers implement a system, the details of its overarching architecture are often

just part of the knowledge base of the person who designs it and those involved with its overall

implementation. The only available specifications tend to be the documentation accompanying the

codebase and the official user helper manual, and sometimes a diagram of the system structure.

However, these are rarely formal and are often prone to errors. Developers and system architects
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need to spend a lot of time dealing with the technical issues and, as such, it makes it hard for

them to spend enough time creating simple and correct representations of their system. Often, their

view of the system is biased towards the envisioned version of their project and does not accurately

reflect real behaviour [Leg+19]. An example of this is the presence of bugs in software - it is not

envisioned during development that a system will be buggy, however this does not guarantee that

the system is indeed bug-free. This is also an important consideration when reasoning about how

to improve the accuracy of specification creation.

There have been attempts at automating the process of creating formal specifications [ABL02;

HMS03; LL18]. However, they struggle to find a good balance between customisability and au-

tomation, often leading to tools that either require too many and too trivial details or are too

inflexible to user input. They also usually relied on either the user fully specifying the system from

scratch, where the only automated part was the generation of diagrams and documentation, or on

the use of machine learning, which often produces inaccurate results.

To first address the inaccuracy of specifications, one current research area that has produced

promising practical results is active automata learning [Vaa17]. This is a method that infers formal

models of systems through interaction. Their main benefit is the production of specifications

that accurately represent the observed behaviour of the system. However, this methodology only

produces accurate models if the target system is correct. As such, we need to allow manual user

guidance for producing accurate specifications even if the system is not fully correct. This is

particularly useful for leveraging current implementations of a system for specification inference

even if the system is still under development.

Most state-of-the-art automata learning frameworks struggle to consider information that con-

tradicts previously learned behaviour. For specification inference, this means that specific learned

behaviours are hard, if not impossible, to be overridden by the user. However, the recent framework

C 3AL provides a more flexible learning model which reasons about how to handle contradictory be-

haviours [Fer+23]. This framework was implemented for the use-case of learning black-box systems

with noise and/or persistent changes during the learning process. However, it has the potential to

be adapted to instead fit the setting of guided specification inference.

2.1 Contributions

Firstly, we explored the use of current state-of-the-art active automata learning methods for speci-

fication inference. We have showcased the potential of these tools for generating initial specification

models that accurately portray the systems’ implemented behaviour, enhancing the specification-

making process by automating one of the most time-consuming parts of it.

We have also explored the differences between the different automata learning algorithms and

frameworks and highlighted the key differences in the types of specification representation via

different automata types. In particular, we have showcased the limitations of some models and

showed how others are able to infer the specification of a strictly bigger set of systems, as well as

presenting them more compactly.

Subsequently, we extended the state-of-the-art C 3AL framework to produce deterministic finite

automata and register automata models. We also introduced a new type of counterexample origin,

the user, which, alongside some adaptations to the original C 3AL algorithm, allows for manually

overwriting specific learned behaviour.

Lastly, we produced a prototype of a specification mining tool that showcases the potential

future of specification creation in a way that better suits the needs of the industry.
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Chapter 3

State of the Art

Automata-based specification inference is first motivated by Cook and Wolf [CW95]. They propose

some theoretical solutions to infer automata models from event sequences using three contrasting

methods: algorithmic grammar inference, Markov models, and neural networks. Ammons, Bod́ık,

and Larus [ABL02] then applied this work to software to generate an FSA that describes segments of

execution traces via probabilistic grammar inference. This paper pioneered the use of the expression

“specification mining” for the area of extrapolating software specifications from system traces and

set a precedent for subsequent work on specification inference. One of the main drawbacks of their

original approach was the need for each program trace to be manually labelled by some software

expert as erroneous or correct, which not only would require extreme technical expertise but also

would likely be subject to human error, particularly for complex systems. In subsequent work,

Ammons et al. [Amm+03] introduce clustering of traces with equivalent behaviour to minimise the

amount of labelling needed. However, manual classification is still required.

Some of the subsequent work in specification mining focused on heuristics improvement. Lo

and Khoo [LK06] explore the use of trace clustering and filtering techniques to increase the accu-

racy, precision and recall of the learned specifications. Alternatively, Whaley, Martin, and Lam

[WML02] propose a new inference strategy by combining both static and dynamic analysis to

extract component-based FSA specifications for object-oriented languages. More recent work in-

volves exploring recent machine learning technologies such as deep learning for specification mining

and training data test-case generation [LL18].

One of the main limitations in the current state-of-the-art tools concerns the correctness of the

inferred specifications. In particular, the described algorithms use machine learning methods to

obtain a specification that has a high likelihood of matching the observed system behaviour. This

approach, however, provides limited guarantees, and most of the recent work has been focused on

mitigating the learning of incorrect behaviour rather than ensuring correctness from the start of

the specification mining process. As such, formal methods emerge as a good alternative.

Active automata learning was initially explored for specification mining by Hungar, Niese,

and Steffen [HNS03] and Hungar, Margaria, and Steffen [HMS03], where the authors successfully

used it to generate FSAs that explain the observed system behaviour. This was further explored in

conjunction with grammar inference by Walkinshaw et al. [Wal+07]. These two works, however, are

not only outdated compared to the current state-of-the-art automata learning algorithms but also

unable to allow for the manual tweaking of the learned models. Performing this type of alterations

to specifications inferred manually is also not straightforward, as often the change to the labelling

of a single behaviour requires substantial changes to the original specification structure.

6



The unsoundness of most specification mining tools and the need for manually relabeling specific

specification behaviours motivates our previously described pursuit of exploring the use of current

state-of-the-art active automata learning techniques to produce flexible specification mining tools.
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Chapter 4

Preliminaries

This chapter provides the necessary technical background for understanding the work described in

the following chapters. First we define formal specification, then introduce deterministic finite au-

tomata and register automata alongside some useful properties and examples, and lastly introduce

and compare the two main active learning frameworks and detail an exemplary learning algorithm.

4.1 Formal Specification

The expression formal specification does not have a straightforward definition. At a conceptual

level, it is the expression, in a formal language and at some level of abstraction, of a collection

of properties a system should satisfy [Lam00]. Some of the purposes of a specification are to aid

the software development process, to describe a system, and to help analyse system behaviour

[Hie+09]. For the purpose of this project, a formal specification is defined as a formal set of

properties that form a necessary and sufficient condition for implementation correctness.

Formal specifications have a variety of possible representations: algebraic structures, logics,

finite-state automata (FSA), among others. These are often equivalent, even though they can each

be more adequate for a particular context. For example, a logic-based representation is useful when

the properties we want to check about the system are in the form of logical formulas, whereas an

algebraic representation is harder to utilise for this particular purpose. This project focuses on

FSAs, as the chosen inference tools produce automaton representations of systems.

4.2 Deterministic Finite-State Automata (DFA)

Before formally defining DFAs, we first fix the relevant notation. An alphabet Σ is a finite set of

symbols. A string or word is a finite sequence of symbols in Σ. The empty string is denoted by ε.

The set of all possible strings is denoted by Σ∗. u · v is the concatenation operation which appends

v to u. A formal language over Σ is a subset of Σ∗ where all its strings conform to the formal rules

defined by the language. From here on we refer to them only as languages.

Example: Let Σ be the alphabet {a, b}. The string “aba” is an example of a string in Σ∗.

This string concatenated with the string “a” is denoted by “aba” · “a” = “abaa”. We can define a

formal language A as a language over Σ where there is always an even number of both as and bs.

The string “abaaba” is in A as it contains an even number of both as and bs, but “aba” is not as

it contains an odd number of bs.
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DEFINITION 1 A deterministic finite automaton M is a tuple (Q, q0,Σ, δ, F ), where:

• Q is a finite set of states

• q0 ∈ Q is an initial state

• Σ is an alphabet

• δ : Q× Σ→ Q is a transition function

• F ⊆ Q is a set of final/accepting states

For conciseness, we can define the additional function δ∗ : Σ∗ → Q which maps each string to

the state reached by M after processing the given string. Formally:

δ∗(w) =

q0 if w = ε

δ(δ∗(u), a) if w = u · a, with u ∈ Σ∗ and a ∈ Σ

A DFA M implements a function A : Σ∗ → 2 with 2 = {⊤,⊥}, which defines if a string is

accepted by M . Formally:

A(w) =

⊤ if δ∗(w) ∈ F

⊥ otherwise

The language of a DFA M is defined as L(M) = {w ∈ Σ∗ |A(w) = ⊤}, which is the set of

strings that the DFA accepts.

4.2.1 String Acceptance Example

Let M be a DFA over Σ = {a, b} that implements the language that accepts strings with odd

numbers of both as and bs. Figure 4.1 shows a graphical representation of this DFA. Each of the

states corresponds to a different combination of parity values as described in Table 4.1. The state

l3 is the only accepting state (characterised by the double circle) and it indeed matches with the

only one for which the parity is odd for both alphabet characters.

l0start l1

l2 l3

a

a

bb

a

a

bb

Figure 4.1: DFA that accept an odd number of as and bs

a b

l0 even even

l1 odd even

l2 even odd

l3 odd odd

Table 4.1: Parity of each state

Let us now consider the example strings u = “ab” and v = “bab”. To verify the acceptance of
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a string by M we need to check if δ∗(w) ∈ F . For the string u we have:

δ∗(ab) =

δ(δ∗(a), b) =

δ(δ(δ∗(ε), a), b) =

δ(δ(l0, a), b) =

δ(l1, b) =

l3

Since l3 ∈ F , we can conclude that u is accepted by M , i.e. A(u) = ⊤. Figure 4.2 shows in

bold the transitions taken in a graphical way. Contrastingly, for string v, δ∗(v) = l1 /∈ F , therefore

A(v) = ⊥ and the string is not accepted by the DFA M . This run is graphically depicted in

Figure 4.3.

l0start l1

l2 l3

a

a

bb

a

a

bb

Figure 4.2: Transitions for input ab

l0start l1

l2 l3

a

a

bb

a

a

bb

Figure 4.3: Transitions for input bab

4.3 Register Automata (RA)

Before formally defining register automata we detail relevant concepts. Let D be a domain of data

values and A be a set of action symbols, each with a corresponding arity of elements from D.
A parameterised input is a symbol of the form α(p1, p2, . . . , pn), where α ∈ A with arity n and

p1, p2, . . . , pn ∈ D. The simplified notation p is used to refer to p1, p2, . . . , pn. A finite sequence

of parameterised inputs is a data word. A data language is a set of data words closed under

permutations on D. Data languages are strictly more expressive than regular languages as their

alphabet set can be infinite if D is infinite. This allows for a better expression of systems that

accept parameterised inputs, such as function calls with arguments. We additionally define some

important RA components. A register is a variable which stores values from D. A guard g is a

propositional formula over registers and values from D.

DEFINITION 2 A register automaton M is a tuple (L, l0,Σ, X,Γ, F ), where:

• L is a finite set of locations

• l0 ∈ L is an initial location

• Σ is an alphabet of parameterised inputs

• X a function that maps each location to a finite set of registers, with X(l0) = ∅
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• Γ is a set of transitions of the form ⟨l, α(p), g, π, l′⟩, where l, l′ ∈ L, α(p) ∈ Σ, g is a guard

over p and X(l), and π is a mapping from X(l′) to X(l)∪p (every register in X(l′) is assigned

a value from X(l) ∪ p)

• F ⊆ L is a set of final/accepting locations

Let us now define the formal semantics of RAs. We start by defining a state as the pair ⟨l, ν⟩,
where l ∈ L and ν : X (l) −→ D is a valuation of the set of registers at location l. The initial state

of an RA is the pair ⟨l0, ∅⟩. A step has the form ⟨l, ν⟩ α(p),g,π−−−−−→ ⟨l′, ν′⟩ and transfers the RA from

state ⟨l, ν⟩ to ⟨l′, ν′⟩ if ⟨l, α(p), g, π, l′⟩ ∈ Γ and g is true for ⟨l, ν⟩. Let w = α1(p1)α2(p2) . . . αn(pn)

be a data word over Σ. A run of the register automaton M over the data word w is a sequence:

⟨l0, ν0⟩
α1(p1),g1,π1−−−−−−−−→ ⟨l1, ν1⟩ . . . ⟨ln−1, νn−1⟩

αn(pn),gn,πn−−−−−−−−−→ ⟨ln, νn⟩,

such that ∀i∈[1,n] : ⟨li−1, αi(pi), gi, πi, li⟩ ∈ Γ. A run is accepting if ln ∈ F .

4.3.1 Data Word Acceptance Example

Let M be a RA with alphabet Σ = {in(p), out(p)} with all parameterised inputs with arity 1

and over the domain of the natural numbers N. M implements the language that accepts any

prefix of the infinite data word comprising of alternating the parameterised symbols in(p) and

out(p) such that the data value p in out(p) matches the data value of the preceding input in(p).

Figure 4.4 shows a graphical representation of this RA that omits any non-accepted transitions for

conciseness. As such, F = {l0, l1}.

l0start l1

in(p) | true

r1 = p

out(p) | p = r1

Figure 4.4: RA that accepts alternating in(p) and out(p) with matching p values

Let us now consider the example data words a = “in(1) out(1)”, b = “out(1)”, and c =

“in(1) out(2)”. To verify the acceptance of a data word by M we need to check if the run over

that data word ends in a state l ∈ F . For data word a we have:

⟨l0, ∅⟩
in(1),true,r1=1−−−−−−−−−−→ ⟨l1, {r1 = 1}⟩ out(1),r1=1,∅−−−−−−−−−→ ⟨l0, {r1 = 1}⟩

Since all above steps are valid and l0 ∈ F , we can conclude that a is accepted by M . Contrast-

ingly, for data word b, there is no step starting at state ⟨l0,∅⟩ for the parameterised input out(1).

As such, this data word is not accepted by M . Lastly, for data word c the step ⟨l0, ∅⟩
in(1),true,r1=1−−−−−−−−−−→

⟨l1, {r1 = 1}⟩ exists, however the step ⟨l1, {r1 = 1}⟩ out(2),r1=2,∅−−−−−−−−−→ ⟨l0, {r1 = 1}⟩ is not valid as the

guard r1 = 2 is not satisfied since the initial state contains the valuation r1 = 1. As such, this

data word is also not accepted by M .

4.3.2 Expressiveness of RAs

RAs are strictly more expressive than DFAs. An example of this is representing languages that

require counting. Let us consider the language over Σ = {a, b} of strings with exactly the same
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amount of as and bs. Due to the pumping lemma, DFAs would not be able to represent this

language as they would require an infinite amount of states to keep track of the number of as and

bs seen. RAs, on the other hand, are able to save these values in their registers. Figure 4.5 shows

an example RA that accepts such a language.

l0start l1

a | true

r1 = 1;r2 = 0

b | true

r1 = 0;r2 = 1

a | r1+1 != r2

r1 = r1+1

b | r2+1 != r1

r2 = r2+1

a | r2+1 = r1

b | r1+1 = r2

Figure 4.5: RA that accepts strings with the same amount of as and bs

4.4 Active Automata Learning

Active Automata Learning is a collection of algorithms that infer the behaviour of a system through

interactions. In particular, they do so while providing minimality and correctness guarantees about

the formal model inferred. We now explore the relevant active learning frameworks and algorithms.

4.4.1 MAT Framework

The Minimally Adequate Teacher framework [Ang87] is an active automata learning framework

where a learner queries a teacher that is omniscient in regards to the system being learned. For-

mally, interactions are modelled as queries between a learner and a teacher where The learner

generates their model by asking queries of the following types:

• Membership: The learner gives the teacher an input word and the teacher responds with

the output word of the system for the provided input.

• Equivalence: The learner gives the teacher a hypothesis model representing the system

and the teacher either confirms that the model is correct (it is equivalent to the system) or,

otherwise, provides a counterexample input such that the output of the hypothesis for that

input is different than the output of the system for that same input.

A visual representation of this framework can be seen in Figure 4.6.

Learner Teacher

Membership query: i ∈ Σ∗

M∗(i) ∈ Γ∗

Equivalence Query: H correct?

Yes / (No + cex )

Figure 4.6: The Minimally Adequate Teacher framework.

4.4.2 L* Algorithm

The L* Algorithm [Ang87] is an algorithm under the MAT framework for learning a minimal DFA.

It uses an observation table (S,E, T ), where S,E are non-empty finite sets of strings and T is a

12



mapping ((S ∪ S · Σ) · E) → {⊤,⊥}, where ⊤ and ⊥ represent the acceptance or rejection of the

string by the system under learning (SUL), respectively. The table structure can be represented

visually as shown in Table 4.2.

E

S

S · Σ

Table 4.2: Structure of an observation table

We use the notation row(a) to mean the sequence of T values for all strings a · e, where e ∈ E.

This corresponds to the row indexed with string a in the visual representation of the table. We

allow ourselves the abuse of notation row(a) ∈ Σ to mean that the row indexed by a is present in

the Σ section of the table.

We are able to convert an observation table into a corresponding model if the table is in a format

compatible with the syntax and semantics of a DFA. This is guaranteed through the closure and

consistency properties.

An observation table is closed when ∀s1 ∈ S ·Σ : ∃s2 ∈ S : row(s1) = row(s2). Informally, this

means that for every row in S ·Σ, there must be a row in S with the same cell values. To make a

table closed, the rows in S · Σ not in S are added to S and the table is extended as appropriate.

The pseudocode algorithm is described in Algorithm 1.

Algorithm 1: Make observation table closed

for row in S · Σ do

if row not in S then

S ← S ∪ {row};

update S · Σ with new S;

An observation table is consistent when ∀s1, s2 ∈ S, a ∈ Σ : row(s1) = row(s2)→ row(s1 ·a) =
row(s2 · a). To make a table consistent, the a ∈ Σ for which row(s1 · a) ̸= row(s2 · a) and the

e ∈ E such that T (s1 · a · e) ̸= T (s2 · a · e) are found, the string a · e is added to E and the table is

extended as appropriate. The pseudocode algorithm is described in Algorithm 2.

Algorithm 2: Make observation table consistent

for s1 ∈ S, s2 ∈ S, a ∈ Σ do

if row(s1) = row(s2) and row(s1 · a) ̸= row(s2 · a) then

let X be the set of elements from E for which rows s1 and s2 differ;

for e ∈ X do

E ← E ∪ {a · e};

extend S and S · Σ with new values of E;

When an observation table is closed and consistent, we can define a minimal DFA where:

Q = {row(s) : s ∈ S} F{row(s) : s ∈ S ∧ T (s) = 1}
q0 = row(ε) δ(row(s), a) = row(s · a)
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The algorithm then works as follows. First, S and E are initialised to ε, membership queries

are made for ε and all a ∈ Σ, and an initial observation table is constructed. The table should

then be made closed and consistent (if it is not already) and the hypothesis representing the table

should be provided to the teacher for an equivalence query. If a counterexample is provided, the

table is extended by adding the counterexample to S along with all of its prefixes. The algorithm

loops back to making the new table close and consistent and terminates when the equivalence

query accepts the hypothesis provided.

Let us now see an example run of this algorithm. The DFA to be learned is the one shown in

Figure 4.7.

l0start l1 l2

a

b

a

b

a

b

Figure 4.7: DFA that accepts strings with a number of b multiple of 3

We first start by initialising our observation table (Table 4.3). We can see that the table is not

closed as row(b) /∈ S. As such, we add b to S and update S · Σ to ensure the table is consistent

(Table 4.4). A hypothesis is then generated from this table (Figure 4.8) which is provided to the

teacher for an equivalence query.

ε

ε 1

a 1

b 0

Table 4.3: Initial table

ε

ε 1

b 0

a 1

ba 0

bb 0

Table 4.4: Closed and consistent

εstart b

a

b

a, b

Figure 4.8: First hypothesis

The teacher then replies with the counterexample bbb, which is accepted by the system but

rejected by our hypothesis. We now extend S with bbb and its prefixes bb and b (Table 4.5). The

new observation table is closed but not consistent, as row(b) = row(bb) but row(b · b) ̸= row(bb · b).
In our case, we have that T (b · b · ε) ̸= T (b · b · ε) As such, we add b · ε = b to E and extend the table

(Table 4.6). The new table is both closed and consistent, and the new hypothesis can be created

(Figure 4.9). This hypothesis now matches our SUL, the equivalence query is accepted and our

learning algorithm terminates.
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ε

ε 1

b 0

bb 0

bbb 1

a 1

ba 0

bba 0

bbba 1

bbbb 0

Table 4.5: Extended with cex

ε b

ε 1 0

b 0 0

bb 0 1

bbb 1 0

a 1 0

ba 0 0

bba 0 1

bbba 1 0

bbbb 0 0

Table 4.6: Consistent

εstart b bb

a

b

a

b

a

b

Figure 4.9: Final hypothesis

Let us now discuss correctness, minimality, and termination. If termination is guaranteed, the

final hypothesis will be correct as the teacher is assumed to respond correctly to both membership

and equivalence queries. Let M be a minimal DFA representing the SUL. The number of unique

rows in S must always be less or equal to the number of states in M , as each row in S describes

a necessary distinguishing state in the system. As such, if the algorithm terminates, the final hy-

pothesis is guaranteed to be minimal. Every time the teacher rejects a hypothesis in an equivalence

query, the provided counterexample must reach a state not present in the current hypothesis, and

the analysis of such counterexample always leads to the addition of a row to S and therefore the

increase of the number of states in our hypothesis by at least 1. Since every iteration of the algo-

rithm generates at least one more state and the algorithm will always produce a final hypothesis

with a finite number of states as shown by the minimality property, we guarantee termination.

The L* algorithm was the first formalised automata learning algorithm, however subsequent

learning algorithms (KV [KV94a], TTT [IHS14], ...) achieve the same goal through more efficient

tree-based data structures instead of an observation table. The L* algorithm was also extended

to RAs, leading to the algorithm SL* [Cas+14] which is able to learn RAs parameterised on a

particular theory (a set of guard operations over the data domain). This year, the new algorithm

SLλ [Die+24] was introduced, which was inspired in the tree-based data structures used in the KV

and TTT algorithms.

4.4.3 C 3AL Framework

The MAT framework has some practical limitations. The first one is the assumption of the existence

of an omniscient teacher, which often does not hold in practice. This is not an issue in particular in

regard to membership queries, as they can be answered directly by the SUL, however equivalence

queries are much harder to implement. Most algorithms implement equivalence queries as a series

of generated membership queries answered directly by the SUL until some level of confidence or

a maximum number of queries is reached. However, system queries are often the bottleneck of

performance and one of the main limitations in learning large real-world systems.

Another issue with the MAT framework concerns the inability to handle conflicts, which are

formally defined as query answers which contradict previous queries in a way that cannot be

expressed by a model of the target class. An example of this is the system initially accepting an

input word but later rejecting it. This often occurs either due to unpredictable noise or purposeful

system updates. Because there is no formal way of deciding which answer to choose, most MAT

algorithms simply crash in the presence of a conflict, leading to all learning progress needing to
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be restarted from scratch. Often practical tools will repeat the same query a certain amount of

times and select the most common answer, but not only does this increase the learning time to

often unfeasible amounts, it also does not fully prevent conflicts from occurring. Additionally, the

necessary number of repeated queries is not a straightforward value to predict as it is intrinsically

connected to the SUL and its environment, and both under and overestimating can lead to very

time-consuming learning runs that make no progress.

As such, the C 3AL framework is presented as an alternative to MAT. C 3AL completely removes

the teacher abstraction and elevates the SUL to a first-class citizen in the learning process. It then

introduces a Reviser entity with whom both the Learner and the SUL solely interact. The Reviser’s

main responsibilities are to store the SUL’s observed responses like a cache and to manage the

conflict-handling strategy for the Learner. A visual representation of this framework can be seen

in Figure 4.10.

Learner Reviser System

MQ

output

EQ

CE

input

output

Prune

Figure 4.10: The C 3AL framework.

The fundamental knowledge-base of the Reviser is in the format of an observation tree. This

data structure has the format of a tree whose root node corresponds to the empty string ε and each

transition out of a node is labeled with an alphabet input symbol and ends in a node corresponding

to the concatenation of the origin node string and the transition label. Each node then stores the

response of the system to its corresponding string. Figure 4.11 shows an example of an observation

tree for the DFA described in Figure 4.7.

⊤start ⊥ ⊥ ⊤

⊤ ⊥ ⊥

b b b

a a a

Figure 4.11: Example of Observation Tree

An example of a conflict for the above observation tree is the input-output pair (“bb”,⊤).
Figure 4.12 highlights the conflicting nodes and transitions in red. To update the tree to be conflict-

free and reflect the new input response, the highlighted nodes and transitions are removed and a

new node is inserted reflecting the changed behaviour while preserving non-affected knowledge.

⊤start ⊥ ⊥ ⊤

⊤ ⊥ ⊥

b b b

a a a

Figure 4.12: Nodes and transitions affected

⊤start ⊥ ⊤

⊤ ⊥

b b

a a

Figure 4.13: Updated observation tree
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Once the observation tree is updated, the learner needs to be reset to a conflict-free state. This

is done by sending a Prune signal to the Learner to restart the learning process. Because the

Learner interacts solely with the Reviser, all the queries unaffected by the conflict are cached in

the observation tree and there is no need to query the system directly for these answers. This is

key as system queries are one of the main bottlenecks during automata learning.

The user can also adapt the Reviser to decide when a query answer can be labelled as a conflict.

In use cases where the system frequently evolves, the most recent update strategy is preferred. If

instead the main source of conflicts is due to noise, the most frequent strategy is better suited.

One key achievement of C 3AL is the fact that the Learner never needs to face any conflicts as

they are all caught by the Reviser and handled there directly. As such, this framework is compatible

with all MAT state-of-the-art learning algorithms. However, one limitation of the C 3AL framework

was that it only supported reactive systems, in particular Mealy Machines, hence the need to extend

the framework for compatibility with this project’s use case. This extension is a continuation of

my previous research at UCL, as the C 3AL framework was introduced by our group, work which

I contributed to for the past 2 years.
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Chapter 5

Solution

In this chapter, the implementation of the proof-of-concept tool for specification mining is detailed1.

This is done in multiple sequential stages corresponding to the iteration cycles of the project

development. Firstly we describe and motivate the chosen interface for learning, the iterator. The

subsequent section focuses on inferring a DFA representation of a bounded iterator at different

levels of abstraction. Next, we talk about the necessary changes to extend the tool to additionally

support RA inference. Then, the learning of unbounded iterators is explored. We then move on to

explain how C 3AL was extended and modified to support manual changes to the learned model.

Lastly, a brief description of the UI and a running example of the tool in practice is provided.

5.1 From Specifications to the Iterator Interface

One of the main difficulties in inferring specifications through system interactions is the inability

to distinguish the “intent” of the system developer from the actual implementation. There is no

way of knowing if the implemented behaviour accurately represents the true requirements of the

system, leading to a lack of a faithful source of truth for input queries. To circumvent this, we make

the assumption that any execution trace that does not trigger any errors or exceptions is correct

unless proven otherwise by the user directly. As such, the first generated specification needs only

to match the behaviour of the system implementation.

The system selected for specification mining was the Java Iterator interface2, as it provides

a concise but rich collection of methods with interesting relationships. An Iterator is an object

that can be used to sequentially loop through a collection of elements. It supports four methods:

hasNext, next, remove, and forEachRemaining. For simplicity, the behaviour of the last method

(forEachRemaining) was not considered. The method hasNext returns true if there are any

elements in the collection that have not yet been iterated through and false otherwise. The method

next returns the next element in the iteration if it exists, otherwise it throws an exception. Finally,

remove deletes the element returned by the last call to next from the underlying collection or

throws an exception if the iterator is not in the correct state: either next has not yet been called

or remove has already been called since the last call to next.

The descriptions of the methods allow us to determine some correct and incorrect behaviour.

Calling hasNext should always be allowed as it only checks the current state of the iterator without

altering it. Calling next should only be allowed if there is a next element, i.e. if hasNext returns

1Link to repository: https://github.com/rasofema/fyp-specification-miner
2https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html
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true. Lastly, calling remove should only be allowed once after a call to next.

To now be able to learn a specification of an Iterator, we need to define an oracle - a mechanism

to convert abstract input sequences into concrete system interactions and then determine if the

observed behaviour is correct or incorrect. A simple way of abstracting the method calling into

input symbols is by simply using the names of the methods as our alphabet. Determining the

correctness of the behaviour is, however, less straightforward. Because the Iterator interface throws

an exception for most incorrect traces, these can be used as our labelling mechanism for traces.

This, in general, is a good approach, as developers use exceptions to warn callers that the execution

did not happen as intended. Nonetheless, the labelling of traces should be tailored to each particular

use-case as necessary. With the target system selected and a strategy for classifying behaviour, we

are now ready to implement our oracle and start learning.

5.2 Mining with DFAs

5.2.1 Initial Implementation

The first version of the project focused on implementing a simple program that was able to learn

some of the behaviour of an iterator. The first methods selected for learning were hasNext and

next. Because the iterator interface is an object of fixed size based on an underlying iterable

that should not be changed during iteration, the emulation of iterators of different sizes had to be

done based on information about their state. In particular, the function hasNext was treated as

an indicator of the current state of the iterator, which would allow us to observe if next was an

allowed operation or not. An overarching oracle was then used to mimic this “mutable” iterator.

To allow the state of the iterator to be determined by the return value of hasNext, the two

return options - hasNextTrue and hasNextFalse - were added as possible values to our learning

alphabet. That is, if hasNextTrue was provided as an input, the iterator would be changed to

one which had the return value true for the function hasNext, but if hasNextFalse, the iterator

would be changed to one which had the return value false for that same function. In practice,

this was implemented by, on a hasNextTrue, creating a new iterator from a singleton list, and on

a hasNextFalse, calling next while hasNext returned true. For both these inputs, the oracle’s

response was always true If the input next was provided, then the current iterator would have

the respective function called and the oracle would respond with true except if an exception was

thrown, in which case the oracle would respond with false. Algorithm 3 shows the pseudocode

for the implementation of the oracle.
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Algorithm 3: Initial implementation of the iterator oracle

switch input symbol do

case hasNextTrue do

if not iterator.hasNext() then iterator = new SingletonIterator(elem) ;

case hasNextFalse do

while iterator.hasNext() do iterator.next() ;

case next do

try:
iterator.next()

catch Exception:
return False

return True

The main learning function used LearnLib to create an L* learner object that took as input the

newly implemented iterator oracle and an alphabet with the symbols hasNextTrue, hasNextFalse,

and next, and a simple equivalence oracle. The function then looped in generating hypotheses

and finding counterexamples until no more counterexamples were found. The final learned DFA

is shown in Figure 5.1. We can see that l0 is the state associated with hasNextFalse and l1 is

associated with hasNextTrue. We can also see that next is only accepted when in the hasNextTrue

state, as taking the next transition when in the hasNextFalse state leads to the non-accepting

sink state. This therefore constitutes our unwanted behaviour for the iterator. The documentation

website for the Java Iterator interface confirms this is the intended behaviour: “hasNext() -

returns true if the iteration has more elements. (In other words, returns true if next() would

return an element rather than throwing an exception.)”3.

l0start l1

l2

hasNextFalse

hasNextTrue

hasNextTrue

hasNextFalse

next
next

hasNextTrue

hasNextFalse

next

Figure 5.1: First DFA learned using hasNextTrue, hasNextFalse, and next

5.2.2 Incorporating the Method remove

The subsequent version focused on adding the iterator method remove, as this is the only remaining

iterator method left.

The previous implementation of hasNextTrue used a singleton list from the Collections util.

However, this type of list generates a SingletonIterator 4, which is immutable and therefore

does not support the remove method. As such, the oracle’s behaviour for hasNextTrue was

3https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html#hasNext--
4https://commons.apache.org/proper/commons-collections/apidocs/org/apache/commons/collections4/

iterators/SingletonIterator.html
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changed to instead use an ArrayList containing a dummy element and generate an iterator. In

addition, the previous behaviour of hasNextFalse used the method next, which was a problem

since the behaviour of remove depends on next having been previously called. This is listed in

the Java Iterator documentation: “remove() - removes from the underlying collection the last

element returned by this iterator (optional operation). This method can be called only once per

call to next().”5. As such, the hasNextFalse behaviour was changed to instead create an empty

ArrayList and generate a fresh empty iterator. The corresponding pseudocode for the oracle is

shown in Algorithm 4.

Algorithm 4: Incorporation of the method remove

switch input symbol do

case hasNextTrue do

if not iterator.hasNext() then

List lst = new List();

lst.add(elem);

iterator = lst.iterator();

case hasNextFalse do iterator = new List().iterator();

case next do

try:

iterator.next();

catch Exception:
return False

case remove do

try:

iterator.remove();

catch Exception:
return False

return True

The newly obtained DFA is shown in Figure 5.2. This DFA mainly differs from Figure 5.1 by

having an extra state, l2, which corresponds to the case where the method next has been called

on an iterator in a hasNextTrue state, but remove has not yet been called. By calling the method

remove, the DFA transitions to the initial state. This is the only remove transition that does not

end in the sink state l3, therefore describing the only acceptable use of the remove method.

5https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html#remove--
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l0start

l2

l1

l3

hasNextFalse

hasNextTrue

next

remove

hasNextTrue

hasNextFalse

next
remove

hasNextFalse

remove

hasNextTrue

next

hasNextFalse

hasNextTrue

remove

next

Figure 5.2: First DFA learned using hasNextTrue, hasNextFalse, and next

5.2.3 Incorporating the Method add

To fully show the behaviour of iterators of different sizes, a final method was necessary: add.

This method is not available for iterators but instead for iterables. As such, a list-like class which

implemented the interface Iterable was created. Introducing this new method meant that now

the iterable could have any size and that the number of next method calls allowed would depend

on the number of elements added, which would require counting. This means that this type of

behaviour is not possible to be represented by a DFA, as shown by the pumping lemma. As such,

the iterable class created was bounded such that, when calling the method add, if the number of

elements in the bounded list matched the predefined bound (therefore being full), the bounded list

would throw an exception. The target class then becomes tractable to be learned as a DFA, as the

boundedness allows for a finite state representation.

The implementation of the oracle behaviour for add is the following: first, the method add

is called on the bounded list with a dummy element, and then a new iterator is generated. It is

necessary to use a new iterator because changing the underlying iterable during iteration is marked

as undefined behaviour6. This newly generated iterator is reset, meaning that it does not know

of the previous iterator’s pointer position obtained via the calls to next. As such, an additional

integer class field which tracks the current position in the iterator was added and the behaviour for

next and remove adjusted: for every call to next the iterator position increases by one, while every

call to remove decreases it. With now a tracker for the latest iterator position, whenever generating

a new iterator, the method next is called until the previous pointer position is reinstated.

The addition of the method add required a few additional changes to the IterOracle. Since

the size of the iterator was now variable (being controlled by add and remove), the previous

implementations for hasNextTrue and hasNextFalse no longer applied and instead these methods

now matched their initial intuition: returning if the method hasNext called on the iterator returned

True or False, respectively. The final oracle is described by the pseudocode in Algorithm 5.

The learned DFA containing the additional method add for an iterable with bound 1 is shown

6https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html#remove--
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in Figure 5.3. This model now more accurately depicts the expected behaviour of the iterator.

Initially, hasNextFalse is accepted, as there are no elements in the list. When add is called, a new

element is added to the list and, as expected, hasNextTrue is accepted. In this state l1, calling

add leads the DFA to transition to our sink state. This matches our expected behaviour according

to the predefined bound of 1 for the list. As there is now one element to iterate over, next can be

called, leading to transitioning into state l2, where hasNextFalse is now accepted. In this state,

we are able to call remove, which eliminates our just-iterated-through element from the list and

opens up the space for another element to be added. We can see that, not considering calls to

hasNext, this model shows that the iterator of bound 1 only accepts actions following the cycle

add - next - remove.

Algorithm 5: Incorporation of the method add

switch input symbol do

case hasNextTrue do return iterator.hasNext() ;

case hasNextFalse do return not iterator.hasNext() ;

case next do

try:

iterator.next();

catch Exception:
return False

iteratorPosition += 1;

case remove do

try:

iterator.remove();

catch Exception:
return False

iteratorPosition -= 1;

case add do

try:

lst.add(elem);

catch OutOfMemoryException:
return False

updateIterator();

return True
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l0start l1

l2l3

hasNextFalse

add

next

remove

hasNextTrue

hasNextTrue

next

add

remove

hasNextFalse

remove

hasNextFalse
add

next

hasNextTrue

add

next

remove

hasNextTrue

hasNextFalse

Figure 5.3: DFA learned for list of bound 1

An additional version of the iterable with bound 1 was learned where the list, instead of

throwing an exception when trying to call add when full, silently fails, and the learned DFA is

shown in Figure 5.4. The only differences are in states l1 and l2, where calling the method add is

now accepted and does not change the state of the iterator, as expected.

l0start l1

l2l3

hasNextFalse

add

next

remove

hasNextTrue

add

hasNextTrue

nextremove

hasNextFalse

remove

add

hasNextFalsenext

hasNextTrue

add

next

remove

hasNextTrue

hasNextFalse

Figure 5.4: DFA learned for list of bound 1 and with silent failure for add
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5.3 Mining with Register Automata

5.3.1 Bounded Iterators

Because of the limitations in representing the behaviour of unbounded list iterators with DFAs,

learning with Register Automata (RA) was also implemented. In particular, RAs were selected

as they are machines that allow for the learning of languages that require counting (ex. counting

the number of elements in a list) and can also produce more compact representations of equiva-

lent DFAs. Learning RA is available via the package RALib7, which is an extension to LearnLib.

However, the two packages had some incompatibilities. During the implementation of this project,

RALib was using LearnLib’s version 0.16.0, which used AutomataLib’s version 0.10.0. However,

the learning loop created previously for learning DFAs required at least version 0.17.0 of LearnLib

and version 0.11.0 of AutomataLib, as the newer versions introduced a lot of refactoring and ad-

ditional functionality not present in the previous versions and not compatible with their structure.

As such, the first part of adding the extra functionality of learning RAs was refactoring RALib

to use the latest version of LearnLib and AutomataLib: 0.18.0-SNAPSHOT and 0.12.0-SNAPSHOT

respectively. RALib did later in the project update its version of LearnLib to 0.17.08.

Once all three libraries were able to be imported without any conflicts, a first attempt at learning

with RALib was made. The RALib instructions for learning the behaviour of a class suggested the

use of their class ClassAnalyser via the command line and using a configuration file. The resulting

model of this learning method using only the methods add and hasNext and a bound of 2 is shown

in Figure 5.5. As can be seen by the model learned, ClassAnalyzer produces a verbose model where

the output of each function is shown as a transition instead of being represented as part of the

node acceptance. This is because the ClassAnalyzer tool was designed to take into account the

input arguments and the output values for the represented behaviour (ex.: for checking if, when

popping the elements of a stack, they match with the previously added). This way of representing

the behaviour of the class is innate to the ClassAnalyzer and as such made this learning method

inadequate for the intended purpose of the tool.

l0start

l1

l2

l3 l4

l5

l6 l7l8

hasNext >False

add

>✓
hasNext

>True

add

>✓
hasNext

>True

add

>×

Figure 5.5: RA learned using ClassAnalyzer

7https://github.com/LearnLib/ralib
8https://github.com/LearnLib/ralib/commit/fe99734a4d1b26ca884aa781de13e947168b3f45
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The subsequent RA learning method explored was to simply implement the learning loop from

scratch as was done with DFAs. The RALib library was designed with the focus of learning

alphabets with parameterised inputs, i.e. inputs that can take a finite number of arguments with

a certain data type. An example of such type of inputs is the function call push for the Stack

interface, which takes as argument an element of the type that the Stack allows. However, this

use-case does not need to consider any input arguments and, as such, treats the parameterised

input classes as simple alphabet constants. The rest of the learning loop follows the same strategy

as for learning DFAs. The learned RA matches exactly with the DFA learned in Figure 5.4.

5.3.2 Unbounded Iterators

The ability to learn an unbounded iterator was then explored, and an additional type of iterator was

defined: unbounded iterator with a bounded reading range. This type of iterator has the restriction

of the pointer indicating the “next-to-read” element not being allowed to be at a distance greater

than the defined bound from the end of the list. This means that the method add would only

succeed if the difference between the size of the iterator and the “next-to-read” pointer is less than

the predefined bound. In order for the RA to capture the values of these two variables, it makes use

of the parameterised input arguments. These arguments are usually used for capturing the original

input arguments to the method calls, however as these are not relevant to our use case we can use

them as helper values that track the specified properties. The RALib is constrained to learning

RAs with data languages that can be modelled by a restricted amount of theories [Cas+16]. One

of these theories is the Integer Equality theory, in which the RA registers and input parameters

can be compared equality-wise with each other and with integer constants.

The idealised compact model of an unbounded iterator with a reading range bound of 3 can be

seen in Figure 5.6, where the only input symbols considered were add and next, each taking one

argument, and the transitions to the failing sink state have been omitted for conciseness, meaning

the depicted transitions are the only ones accepted. An additional input symbol was used, init,

so that the registers r2 and r3 could be initialised with the value 0, as RALib only allows input

parameters or the value of a register to be assigned to another register. The behaviour of this

model is best understood by thinking of the registers as a stack, where r1 is at the top and r3 is

at the bottom of the stack. The add transition from state l1 to state l2 should only be taken when

there are no elements to be read, i.e. the iterator has no next element. It adds one element and

records this by pushing a 1 into the register stack. Once in state l2, adding more elements into the

stack has the same behaviour, except there is now an additional guard to ensure that the bottom

of the stack has not been reached with 1s (i.e. the reading bound has not been reached). If instead

the function next is called, an element is popped from the register stack. Once only one element is

left in the stack (i.e. the iterator is only able to call next once more), the transition to l1 is taken.

The depicted model shows the case of a reading bound of 3, however this is only an example,

as equivalent models with different reading bounds can be obtained by simply adding/removing

registers and updating the transitions accordingly.
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l0start l1 l2

init(p) | p=0

r2=p;r3=p

add(p) | p=1

r1=p

next(p) | (r2=0)&&(p=0)

r1=r2

add(p) | (r3=0)&&(p=1)

r3=r2;r2=r1;r1=p

next(p) | (r2=1)&&(p=0)

r1=r2;r2=r3;r3=p

Figure 5.6: Idealised compact RA for an unbounded list with a reading bound of 3

To make a version of the idealised RA without a reading bound, a stronger theory is needed.

In particular, this theory needs a way to keep track of the reading difference using the registers.

Because calling add and next changes the reading difference in steps of 1, we need a theory that

can track changes in exact steps. Such a theory is called an increment theory, which, in addition

to the checks provided by the equality theory, can check for equality between a value and another

value with a constant added to it. The full unbounded iterator RA that uses the increment theory

can be seen in Figure 5.7, which, like for Figure 5.6, only shows the allowed transitions. This RA

only requires two registers: r1 tracks the number of elements in the iterator and r2 the current

“next-to-read” pointer. It ensures that next can never be called if either there are no elements in

the iterator or if the “next-to-read” pointer is at the end.

l0start l1 l2

add(p) | true

r1=p;r2=p

add(p) | p=r1+1

r1=p

next(p) | p=r2

add(p) | p=r1+1

r1=p

next(p) | (p=r2+1)&&!(r1=r2)

r2=p

Figure 5.7: Idealised RA for an unbounded list no reading bound

Both these idealised RAs, however, were not able to be learned using RALib. The version with

the reading bound only uses constant parameters, and as such the registers are not necessary and

the library chooses instead to just create states. The RA learned with RALib for the idealised

version of the unbounded iterator with a reading bound of 3 can be seen in Figure 5.8.

l0start l1 l2 l3 l4
init(p) | p=0

add(p) | p=1

next(p) | p=0

add(p) | p=1

next(p) | p=0

add(p) | p=1

next(p) | p=0

Figure 5.8: Learned “compact” RA for an unbounded list with a reading bound of 3

The learning of the unbounded version with no reading bound was also explored in practice,

however the increment theory had only been implemented in an experimental branch9, which

diverged majorly from the main branch. The RA learned with RALib for the idealised version of

the unbounded iterator with no reading bound can be seen in Figure 5.9. In this case, we can see

9https://github.com/LearnLib/ralib/tree/succ-stable
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that the RA did not learn the full behaviour and did not generalise it either. Initially, this was

believed to be due to RALib not allowing register-to-register comparison in the guard, preventing

it from checking if the reading difference had been reached. However, an equivalent version of the

ideal unbounded model with no reading bound was idealised that did not require such a constraint

in the guard. This is shown in Figure 5.10. The unlearnability of the idealised models seems to

be due to the limitations of the library, meaning that should be theoretically possible to obtain

compact models of unbounded iterators. However, extending the current libraries to enable this

aim would require quite a considerable amount of work.

l0start l1 l2 l3

l4

add(p) | True

r1=p

add(p) | r1+1=p

r2=p

next(p) | r1=p

r1=r2

add(p) | r2+1=p

r2=p;r3=r2

next(p) | r1=p

r1=r3

next(p) | r1=p
add(p) | r1+1=p

r1=p

add(p) | r2+1=p

r2=p

Figure 5.9: Learned RA for an unbounded list with no reading bound

l0start l1 l2

add(p) | p=1

r1=p

add(p) | p=r1+1

r1=p

next(p) | p=0

r2=p

add(p) | p=r1+1

r1=p

next(p) | (p=r2+1)&&!(r1=p)

r2=p

Figure 5.10: Second idealised unbounded with no reading bound, no register comparison in guards

5.4 Extending C 3AL and Using It to Accept User Input

So far, all the learning implementations have used the MAT framework. This traditional learn-

ing framework relies on determinism, where no system responses are able to contradict previously

learned behaviour. However, for this tool to allow the user to overwrite previously learned be-

haviour, the learning algorithm must be able to accept counterexamples that conflict with previous

system responses. The C 3AL framework is then useful, as it provides a framework for handling

conflicts. However, C 3AL had been only implemented for Mealy Machines and not for DFAs or

RAs. As such, the initial step in this extension was to enable the support of these two model types.

Firstly, the accepted automaton type was changed to any object implementing the AutomataLib

Output interface. The DFA class already implemented this interface, so it was only necessary to

add this interface to the RegisterAutomaton class and implement the relevant methods.

C 3AL takes as one of its arguments an AdaptiveConstruction, corresponding to the obser-

vation tree used by the Reviser to keep track of the observed system traces. The name adaptive
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contrasts with incremental as this data structure is able to handle conflicts instead of simply

recording information in an incremental way. The only implemented adaptive observation trees in

the AutomataLib library were for Mealy Machines. As such, DFA and RA versions of both the

incremental and the adaptive observation trees were added to AutomataLib and RALib. Once

these changes were performed, two additional alterations were required. The first one involved

slightly adjusting the input types of the RegisterAutomata class to allow for a common alphabet

type with DFAs and allow the tool to support these two automata. Then, the RALib learning algo-

rithms were made to extend the class LearningAlgorithm and C 3AL adapted to accept objects of

type MembershipOracle to further enable the compatibility between libraries. After adding these

classes, it was finally possible to use C 3AL to learn DFA and RA models of the iterator which, as

expected, returned the same results as prior.

Both AutomataLib and RALib were now finally ready to be extended to accept user-provided

counterexamples. Their goal is to overwrite the behaviour learned for a particular input by the

algorithm, which for C 3AL is stored in the Reviser’s observation tree. To therefore determine

if a query response supersedes another for the same input, we need to keep track of the origin

of each observation. As such, the enum CexOrigin = {SUL, USER, UNKNOWN} was introduced to

label each tree node with the corresponding origin. When a node corresponds to a query answered

directly by the system, the enum SUL is used. If however it comes from a manual counterexample

provided by the user, USER is chosen. The enum UNKNOWN is only used when a node is created such

that there is a path to the target input word but its acceptance is not yet known. For example,

if an empty observation tree received the query (“ab”, T rue), it would create two nodes from the

root node, one for the input symbol a and another for b. The node associated with the word “ab”

would be labelled as True, however it would not yet know the acceptance for the “a” node.

With the necessary tools for labelling observation origin set-up, the behaviour of both the DFA

and RA adaptive trees was extended to implement the counterexample handling strategy. The

behaviour for inserting a new observation is detailed in Algorithm 6. In particular, the logic for

determining if an observation can be overwritten corresponds to the if condition in lines 7 and 8.

Concisely, those lines ensure that overwriting is only allowed if the acceptance differs and either

the node’s answer came from the same origin or it did not come from the user. This ensures that

only the user is able to overwrite a user-provided counterexample.

Algorithm 6: Inserting query answer into observation tree with origin label

1 Function insert(input, acceptance, origin):

2 currNode = root;

3 for symbol ∈ input do

4 if not currNode.hasChild(symbol) then currNode.create(symbol);

5 currNode = currNode.transition(symbol);

6 if currNode.acceptance == UNKNOWN then currNode.set(acceptance, origin);

7 else if currNode.acceptance != acceptance and

8 (currNode.origin == origin or currNode.origin != USER) then

9 currNode.set(acceptance, origin);

At this point, most functionality seemed to be working, but manually providing counterexam-

ples was not working as expected. This was because, once the tree builder was updated and the

Reviser restarted the learning, it was still using the system directly to check for counterexamples

instead of the observation tree, therefore bypassing the user-provided counterexamples. As such,
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the Reviser was adapted to instead always using the observation tree and only checking for system

answers if the query was not in the tree. This could be done because the system’s behaviour is

non-changing. The original use case for C 3AL was to consider scenarios where there is either noise

or the system evolves. However, in our scenario, we can assume that the observation tree only

contains correct system responses and, as such, does not need to check if the system responds with

anything that contradicts previously learned behaviour.

All changes were then in place, and the tool was ready to accept manual counterexamples.

When creating the C3AL learner it is necessary to provide a tree builder. The tool creates an

RaTreeBuilder and a DFATreeBuilder on start and stores a reference to these objects as class

attributes. These are then used when a new instance of C3AL is created, done when a new learning

algorithm is created. By maintaining the previous tree builder we retain its cache and prevent

the repetition of several queries, optimising the learning process. When a manual counterexample

needs to be provided, it is passed onto both tree builders. By manually altering both tree builders

we ensure the counterexamples provided are consistent for both DFA and RA learning algorithms.

5.5 Introduction of the User Interface

We used the Swing API for the user interface (UI) and restructured the code to follow a Model-

View-Controller structure. The implemented classes were put in the model package, the main

learning loop was put in the controller package alongside a main class that starts the application,

and the UI was implemented in the view package.

The UI comprises a singular JFrame, which contains a main JPanel with all of the available

functionality. An image of the UI can be seen in Figure 5.11. On the top left is the image of

the currently learned model. Below the model is a drop-down menu of the available learning

algorithms. On the bottom right are two buttons, one named True in a green background and one

named False in a red background. These buttons work in conjunction with the drop-down menu

above them, which allows the user to select an input from the available alphabet (in this case: add,

next, remove, hasNextTrue, and hasNextFalse) and add it to the grey area above. The user can

also remove elements from the grey area by simply clicking on them. Once the user is happy with

their input sequence, they can click the True or False button to let the learning algorithm know

they want this sequence to be considered as True or False, respectively. The learning algorithm

will then add this user counterexample and update the learned model.

30



Figure 5.11: Screenshot of the UI

The following learning algorithms are supported:

• DFA Classic L*

• DFA Extensible L*

• DFA KV

• DFA TTT

• RaDT

• RaLambda

• RaStar

5.6 Specification Miner Example Run

This section will now describe an example run of the tool for an iterator of bound 1 using only

the inputs add, next, and remove. Figure 5.12 shows the screen when the application first starts,

which contains the first learned model of the iterator interface as shown in Figure 5.13.
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Figure 5.12: Initial screen

Figure 5.13: Initially learned DFA

The initial DFA matches exactly with the expected behaviour of the iterator, with a cycle for

the sequence “add next remove”. However, the user may decide that calling remove should only

be accepted if, in an input sequence, it appears more than once. This would mean that “add next

remove” should be rejected but nothing else (i.e. “add”, “add next”, “add next remove add”

and others are still accepted). The user can therefore provide this counterexample by selecting the

input symbols and adding them to the grey-box area using the dropdown menu and button shown

in Figure 5.14. If a user, by mistake, inserts the wrong input symbol, they can just click on the

inserted symbol in the grey-box area.
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Figure 5.14: Buttons to manually create counterexample

The final counterexample for “add next remove” should then look like Figure 5.15. To provide

the crafted input word as a counterexample to the tool, the user can simply click the button for

the truth value they want the input word to have, in this case False (Figure 5.16).

Figure 5.15: Counterexample input word created Figure 5.16: False counterexample button

The tool then processes the counterexample provided by the user and the model is updated,

resulting in the DFA shown in Figure 5.17. As can be seen, indeed “add next remove” is now

rejected by the DFA (state 4), with other remaining input words retaining their truth value.

Figure 5.17: Newly learned DFA after providing (“add next remove”, False) as a counterexample
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If the user then decides they instead want, for example, to learn a Register Automata with the

learning algorithm “RaDT”, they can select it in the dropdown menu shown in Figure 5.18.

Figure 5.18: Changing learning algorithm

All the user’s provided counterexamples are passed onto both the DFA and the RA learners

and, as such, the user’s progress is maintained independently of the learning algorithm and model

used. We can confirm this by observing the learned RA depicted in Figure 5.19, which corresponds

to the model shown right after selecting the new learning algorithm.

Figure 5.19: RA learned after changing learning algorithm
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Chapter 6

Conclusion

6.1 Achievements

This project has achieved the goals it originally set out to do. A variety of state-of-the-art active

automata learning methods have been employed to infer the specification of an Iterator class and

successfully produced both DFAs and RAs that accurately explain the behaviour of the class in

study. The active learning framework C 3AL has also been extended to provide the ability to

manually change some of the behaviour described by the learned automata without requiring

the restart of the learning process. Finally, a full-stack proof-of-concept tool was produced to

demonstrate what future specification miners that exploit formal model inference and accept user-

provided counterexamples could look like.

6.2 Evaluation

The outlined goals for this project have been achieved, however some limitations still remain. One

key limitation was the inability to obtain a specification for an unbounded iterator. Although the

iterator interface was an example target system, keeping track of particular property values is a

common property of other systems, and, as such, not being able to currently learn these types of

systems restricts significantly the scope of systems that the proposed tool can learn.

One other important consideration is the current need for a manual implementation of the SUL

oracle that classifies the behaviour of the system. This was out of the scope of the project, as the

main goal was to prove the usefulness and ability to apply active automata learning for a generic

target system. However, the current tool requires the user to provide their own system oracle that

converts abstract inputs into real system calls and classifies the correctness of the observed output.

One final issue is the restriction on the type of counterexamples accepted. The implemented

extension to C 3AL only allows for providing finite-length input words, which prevents certain types

of behaviour from being tweaked, which are important for ensuring safety and liveliness properties.

For example, the current algorithm has no way of expressing that “calling add after remove should

always be rejected”, as this would require the user to label these as false for the infinite set of all

possible input strings containing an add following a remove. In practice, it is possible that the user

provides several finite traces that the algorithm extrapolates this behaviour to infinite sequences.

However, it still requires that the user provides enough of these traces for this to happen.

Despite the evaluation concerns of the tool, this project succeeded in showing that active

automata learning tools can be used to produce reliable specifications and that their rigour does
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not have to be in the way of manual adjustments of the results obtained, a must-have for this tool

to be applicable to real-world software development and system design pipelines.

6.3 Future Work

The primary sources of future work are the limitations described in the evaluation above. The

restrictions in learning an unbounded iterator were caused by the limitations in the RALib learning

library. To address this, it would be necessary to add missing functionality, such as register-with-

register comparison for guards and the integration of the increment theory with the main branch.

The system oracle generation has the problem of being domain-specific. Nevertheless, program-

ming systems are often similar in the way that they convert abstract input symbols to concrete

method executions and label certain behaviours as correct or incorrect. An example of this is

the RALib ClassAnalyzer tool, which requires only a simple configuration file for generating the

system oracle. Similar approaches could be explored to aid in the generation of these oracles.

Lastly, the limitations on counterexample types can be addressed by introducing rule-based

counterexamples. These would convert a simple counterexample into a set of counterexample

inputs defined by a condition (ex.: all inputs containing add right after remove should be rejected).

6.4 Final Remarks

Specifications are essential to any real-world system: they guide us through the good and permis-

sible behaviour and warn us of the consequences of misuse. They are also a necessity in formal

contexts that require technical descriptions of the system to evaluate if the intended behaviour

matches with the implemented one. Nevertheless, they are rare due to the large amount of time

and effort required. This project tackled the main reasons making developers and architects steer

away from formal specifications and aimed to showcase the potential of state-of-the-art formal

methods to aid in the generation of such specifications.

36



References

[ABL02] Glenn Ammons, Rastislav Bod́ık, and James R. Larus. “Mining specifications”. In:

Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on Principles of pro-

gramming languages. POPL ’02. New York, NY, USA: Association for Computing

Machinery, Jan. 1, 2002, pp. 4–16. isbn: 978-1-58113-450-6. doi: 10.1145/503272.

503275. url: https://doi.org/10.1145/503272.503275 (visited on 05/21/2024).

[Alg+11] Jade Alglave et al. “Making Software Verification Tools Really Work”. en. In: Au-

tomated Technology for Verification and Analysis. Ed. by Tevfik Bultan and Pao-

Ann Hsiung. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2011,

pp. 28–42. isbn: 978-3-642-24372-1. doi: 10.1007/978-3-642-24372-1_3.

[Amm+03] Glenn Ammons et al. “Debugging temporal specifications with concept analysis”. In:

Proceedings of the ACM SIGPLAN 2003 conference on Programming language design

and implementation. PLDI ’03. New York, NY, USA: Association for Computing Ma-

chinery, May 9, 2003, pp. 182–195. isbn: 978-1-58113-662-3. doi: 10.1145/781131.

781152. url: https://doi.org/10.1145/781131.781152 (visited on 05/21/2024).

[Ang87] Dana Angluin. “Learning regular sets from queries and counterexamples”. In: In-

formation and Computation 75.2 (Nov. 1, 1987), pp. 87–106. issn: 0890-5401. doi:

10 . 1016 / 0890 - 5401(87 ) 90052 - 6. url: https : / / www . sciencedirect . com /

science/article/pii/0890540187900526 (visited on 04/29/2024).

[Ber07] Antonia Bertolino. “Software Testing Research: Achievements, Challenges, Dreams”.

en. In: Future of Software Engineering (FOSE ’07). Minneapolis, MN, USA: IEEE,

May 2007, pp. 85–103. isbn: 978-0-7695-2829-8. doi: 10.1109/FOSE.2007.25. url:

http://ieeexplore.ieee.org/document/4221614/ (visited on 12/05/2023).

[Bri+20] Tom Britton et al. Reversible Debugging Software ”Quantify the time and cost saved

using reversible debuggers”. Nov. 2020.

[BZK21] Matthew L. Bolton, Xi Zheng, and Eunsuk Kang. “A formal method for including

the probability of erroneous human task behavior in system analyses”. In: Reliability

Engineering & System Safety 213 (2021), p. 107764. issn: 0951-8320. doi: https:

//doi.org/10.1016/j.ress.2021.107764. url: https://www.sciencedirect.

com/science/article/pii/S0951832021002921.

[Cas+14] Sofia Cassel et al. “Learning Extended Finite State Machines”. In: Software Engineer-

ing and Formal Methods. Ed. by Dimitra Giannakopoulou and Gwen Salaün. Cham:

Springer International Publishing, 2014, pp. 250–264. isbn: 978-3-319-10431-7. doi:

10.1007/978-3-319-10431-7_18.

37

https://doi.org/10.1145/503272.503275
https://doi.org/10.1145/503272.503275
https://doi.org/10.1145/503272.503275
https://doi.org/10.1007/978-3-642-24372-1_3
https://doi.org/10.1145/781131.781152
https://doi.org/10.1145/781131.781152
https://doi.org/10.1145/781131.781152
https://doi.org/10.1016/0890-5401(87)90052-6
https://www.sciencedirect.com/science/article/pii/0890540187900526
https://www.sciencedirect.com/science/article/pii/0890540187900526
https://doi.org/10.1109/FOSE.2007.25
http://ieeexplore.ieee.org/document/4221614/
https://doi.org/https://doi.org/10.1016/j.ress.2021.107764
https://doi.org/https://doi.org/10.1016/j.ress.2021.107764
https://www.sciencedirect.com/science/article/pii/S0951832021002921
https://www.sciencedirect.com/science/article/pii/S0951832021002921
https://doi.org/10.1007/978-3-319-10431-7_18


[Cas+16] Sofia Cassel et al. “Active learning for extended finite state machines”. In: Formal

Aspects of Computing 28.2 (Apr. 2016), pp. 233–263. issn: 0934-5043, 1433-299X. doi:

10.1007/s00165-016-0355-5. url: https://dl.acm.org/doi/10.1007/s00165-

016-0355-5 (visited on 12/14/2023).

[CW95] Jonathan E. Cook and Alexander L. Wolf. “Automating process discovery through

event-data analysis”. In: Proceedings of the 17th international conference on Software

engineering. ICSE ’95. New York, NY, USA: Association for Computing Machinery,

Apr. 23, 1995, pp. 73–82. isbn: 978-0-89791-708-7. doi: 10.1145/225014.225021.

url: https://dl.acm.org/doi/10.1145/225014.225021 (visited on 05/21/2024).

[Die+24] Simon Dierl et al. Scalable Tree-based Register Automata Learning. arXiv.org. Jan. 25,

2024. url: https://arxiv.org/abs/2401.14324v1.

[Fer+23] Tiago Ferreira et al. Conflict-Aware Active Automata Learning (Extended Version).

Sept. 6, 2023. doi: 10.48550/arXiv.2308.14781. arXiv: 2308.14781[cs]. url:

http://arxiv.org/abs/2308.14781 (visited on 05/23/2024).

[Gar05] Simson Garfinkel. “History’s worst software bugs”. In: Wired News, Nov (2005), p. 1.

[Hie+09] Robert M. Hierons et al. “Using formal specifications to support testing”. In: ACM

Computing Surveys 41.2 (Feb. 2009), pp. 1–76. issn: 0360-0300, 1557-7341. doi: 10.

1145/1459352.1459354. url: https://dl.acm.org/doi/10.1145/1459352.

1459354 (visited on 02/14/2024).

[HMS03] H. Hungar, T. Margaria, and B. Steffen. “Test-based model generation for legacy sys-

tems”. In: International Test Conference, 2003. Proceedings. ITC 2003. International

Test Conference, 2003. Proceedings. ITC 2003. Vol. 1. ISSN: 1089-3539. Sept. 2003,

pp. 971–980. doi: 10.1109/TEST.2003.1271084. url: https://ieeexplore.ieee.

org/document/1271084 (visited on 05/22/2024).

[HNS03] Hardi Hungar, Oliver Niese, and Bernhard Steffen. “Domain-Specific Optimization

in Automata Learning”. In: Computer Aided Verification. Ed. by Warren A. Hunt

and Fabio Somenzi. Berlin, Heidelberg: Springer, 2003, pp. 315–327. isbn: 978-3-540-

45069-6. doi: 10.1007/978-3-540-45069-6_31.

[HP18] Andrew Habib and Michael Pradel. “How many of all bugs do we find? a study of static

bug detectors”. In: Proceedings of the 33rd ACM/IEEE International Conference on

Automated Software Engineering. ASE ’18. New York, NY, USA: Association for

Computing Machinery, Sept. 2018, pp. 317–328. isbn: 978-1-4503-5937-5. doi: 10.

1145/3238147.3238213. url: https://dl.acm.org/doi/10.1145/3238147.

3238213 (visited on 12/04/2023).

[IHS14] Malte Isberner, Falk Howar, and Bernhard Steffen. “The TTT Algorithm: A Redundancy-

Free Approach to Active Automata Learning”. In: Runtime Verification. Ed. by Bor-

zoo Bonakdarpour and Scott A. Smolka. Cham: Springer International Publishing,

2014, pp. 307–322. isbn: 978-3-319-11164-3. doi: 10.1007/978-3-319-11164-3_26.

[Kli96] Rob Kling. “A - Systems Safety, Normal Accidents, and Social Vulnerability”. In:

Computerization and Controversy (Second Edition). Ed. by Rob Kling. Second Edi-

tion. Boston: Morgan Kaufmann, 1996, pp. 746–763. isbn: 978-0-12-415040-9. doi:

https : / / doi . org / 10 . 1016 / B978 - 0 - 12 - 415040 - 9 . 50144 - 5. url: https :

//www.sciencedirect.com/science/article/pii/B9780124150409501445.

38

https://doi.org/10.1007/s00165-016-0355-5
https://dl.acm.org/doi/10.1007/s00165-016-0355-5
https://dl.acm.org/doi/10.1007/s00165-016-0355-5
https://doi.org/10.1145/225014.225021
https://dl.acm.org/doi/10.1145/225014.225021
https://arxiv.org/abs/2401.14324v1
https://doi.org/10.48550/arXiv.2308.14781
https://arxiv.org/abs/2308.14781 [cs]
http://arxiv.org/abs/2308.14781
https://doi.org/10.1145/1459352.1459354
https://doi.org/10.1145/1459352.1459354
https://dl.acm.org/doi/10.1145/1459352.1459354
https://dl.acm.org/doi/10.1145/1459352.1459354
https://doi.org/10.1109/TEST.2003.1271084
https://ieeexplore.ieee.org/document/1271084
https://ieeexplore.ieee.org/document/1271084
https://doi.org/10.1007/978-3-540-45069-6_31
https://doi.org/10.1145/3238147.3238213
https://doi.org/10.1145/3238147.3238213
https://dl.acm.org/doi/10.1145/3238147.3238213
https://dl.acm.org/doi/10.1145/3238147.3238213
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/https://doi.org/10.1016/B978-0-12-415040-9.50144-5
https://www.sciencedirect.com/science/article/pii/B9780124150409501445
https://www.sciencedirect.com/science/article/pii/B9780124150409501445


[KV94a] Michael J. Kearns and Umesh Vazirani. An Introduction to Computational Learning

Theory. The MIT Press, Aug. 15, 1994. isbn: 978-0-262-27686-3. doi: 10.7551/

mitpress/3897.001.0001. url: https://direct.mit.edu/books/book/2604/An-

Introduction-to-Computational-Learning-Theory (visited on 05/23/2024).

[Lam00] Axel Van Lamsweerde. “Formal specification: a roadmap”. In: Proceedings of the

Conference on The Future of Software Engineering. ICSE00: 22nd International Con-

ference on Software Engineering. Limerick Ireland: ACM, May 2000, pp. 147–159.

isbn: 978-1-58113-253-3. doi: 10.1145/336512.336546. url: https://dl.acm.org/

doi/10.1145/336512.336546 (visited on 02/14/2024).

[Leg+19] Owolabi Legunsen et al. “How effective are existing Java API specifications for finding

bugs during runtime verification?” In: Automated Software Engineering 26.4 (Dec. 1,

2019), pp. 795–837. issn: 1573-7535. doi: 10.1007/s10515- 019- 00267- 1. url:

https://doi.org/10.1007/s10515-019-00267-1 (visited on 05/23/2024).
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